Rasch Model for Analysis of Scientific Attitude Instruments in the Context of Secondary School Science Education
DOI:
https://doi.org/10.61142/esj.v3i2.234Keywords:
Scientific Attitude, Rasch Model, Instrument ValidationAbstract
This study aims to analyze the psychometric quality of a scientific attitude questionnaire instrument for secondary school students using the Rasch Model. The instrument, developed based on Harlen’s theory, includes four key dimensions: curiosity, respect for data, critical thinking, and open-mindedness/cooperation. A survey method was employed with 30 seventh-grade students in Bandung City as respondents. Data were collected through a four-point Likert scale questionnaire and analyzed using Winsteps 4.6.0 software. The Results revealed that 16 out of 23 items fit the model based on Outfit Mean Square, Z-Standard, and Point-Measure Correlation indicators. The instrument also demonstrated high overall validity and reliability, with an Outfit MNSQ of 1.00, ZSTD of -0.17, an item separation index of 2.91, and a reliability coefficient of 0.89, indicating good discrimination and stable measurement structure. In conclusion, the scientific attitude instrument exhibits strong psychometric properties and can serve as a valid tool for assessing student attitudes in science education. However, revisions are needed for seven misfitting items to enhance clarity and construct alignment. Further validation on broader populations is recommended to ensure generalizability.
References
Berkmans, K., & Renuka, P. (2024). A study of scientific attitude as predictors of achievement in science of class X students: Analysing socio-demographic variables in private vs. government schools, Telugu medium vs. English medium. International Journal for Multidisciplinary Research, 6(4). https://doi.org/10.36948/ijfmr.2024.v06i04.24408
Boone, W. J., Staver, J. R., & Yale, M. S. (2014). Person Reliability, Item Reliability, and More (pp. 217–234). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6857-4_10
Burevtsev, A. V., Rogov, I. E., & Kozlov, A. V. (2020). Logits-based processing of educational information. Journal of Physics: Conference Series, 1679(3), 032052. https://doi.org/10.1088/1742-6596/1679/3/032052
Carleial, S., & Soares, M. V. (2022). The urgent and yet forgotten problems of current scientific and academic practice. Arquivos de Ciências do Mar, 55(Especial), 52–62. https://doi.org/10.32360/acmar.v55iespecial.78396
Ciptari, P. A., Purwanti, N. K. R., & Erawati, N. K. (2024). Comparison of the classical test theory and the Rasch model in the analysis of mastery test of concept systems of linear (SPLDV). Prima, 8(2), 390. https://doi.org/10.31000/prima.v8i2.8647
Darmana, A., Sutiani, A., Nasution, H. A., Ismanisa, I., & Nurhaswinda, N. (2021). Analysis of Rasch model for the validation of chemistry national exam instruments. Jurnal Pendidikan Sains Indonesia, 9(3), 329–345. https://doi.org/10.24815/JPSI.V9I3.19618
Davier, A. A. von. (2024). Afterword. In Psychometrics and measurement in assessment (pp. 481–490). https://doi.org/10.4324/9780429263491-30
DeCoster, J., Francis, M. K., Lee, G., & Rubinstein, E. (2024). Systematic data validation: Improving education research by improving data quality. https://doi.org/10.35542/osf.io/9ds38
Durasa, H., & Suastra, I. W. (2024). Profil Pelajar Pancasila: Menjawab Tantangan Abad 21. Jurnal Pendidikan Karakter. https://doi.org/10.21831/jpka.v1i1.68529
Elfira, I., Razak, A., Syamsurizal, S., & Helendra. (2024). Application of the Rasch Model to the Evaluation of Biological Problems. Journal of Education Research and Evaluation, 8(3), 443–451. https://doi.org/10.23887/jere.v8i3.83688
Fajrianthi, F., Hendriani, W., & Septarini, B. G. (2016). Pengembangan tes berpikir kritis dengan pendekatan item response theory. Jurnal Penelitian dan Evaluasi Pendidikan, 20(1), 45–55. https://doi.org/10.21831/pep.v20i1.6304
Fauzan, F., Ansori, R. A. M., Dannur, M., Pratama, A., & Hairit, A. (2023). The Implementation of the Merdeka Curriculum (Independent Curriculum) in Strengthening Students’ Character in Indonesia. Ggyoyukgwahagyeon-Gu. https://doi.org/10.58223/aqlamuna.v1i1.237
Fitrah, M., Sofroniou, A., Ofianto, Judijanto, L., & Widihastuti. (2024). Reliability and separation index analysis of mathematics questions integrated with the cultural architecture framework using the Rasch model. Journal of Education and E-Learning Research. https://doi.org/10.20448/jeelr.v11i3.5861
Gading, R. M. A. D. P., & Rohaeti, E. (2024). Developing an Instrument for Scientific Attitude Assessment In Learning Chemistry. Jurnal Penelitian Pendidikan IPA, https://doi.org/10.29303/jppipa.v10i3.6669
Harlen, W. (2018). The teaching of science: Studies in primary education. London: David Fulton Publisher.
Heiberger, R. M., & Holland, B. (2015). Statistical Analysis and Data Display: An Intermediate Course with Examples in R. Springer New York, NY
Hu, P., & Xu, H. (2024). Student teachers’ perceptions and application of questionnaire survey in an EFL context. SAGE Open. https://doi.org/10.1177/21582440241245621
Ilfiandra, I., Nadhirah, N. A., Suryana, D., & binti Ahmad, A. (2022). Development and Validation Peaceful Classroom Scale: Rasch Model Analysis. International Journal of Instruction, 15(4), 497–514. https://doi.org/10.29333/iji.2022.15427a
Jokić, S. (2024). Challenges of contemporary education and how to overcome them. In Contemporary Education Series (pp. 7–20). https://doi.org/10.46727/c.25-04-2024.p7-20
Kaul, R., Kaul, R., & Paul, P. (2025). Reliability study. In Translational Cardiology (pp. 247–249). Elsevier. https://doi.org/10.1016/B978-0-323-91790-2.00040-X
Khine, M. S. (2020). Objective measurement in psychometric analysis. In Objective measurement in psychometric analysis (pp. 3–7). Springer. https://doi.org/10.1007/978-981-15-1800-3_1
Khotimah, K., Hadi, T. S., & Lestari, I. (2024). Application of the Rasch model in research publications: A bibliometric analysis. Plusminus: Jurnal Pendidikan Matematika, 4(2), 229–240. https://doi.org/10.31980/plusminus.v4i2.1466
Loh, S. L., Jamil, N. A., & Thoe, N. K. (2022). Establishing the validity and reliability of a program evaluation questionnaire using Rasch measurement model. Dinamika: Jurnal Ilmiah Pendidikan Dasar, 14(2), 149. https://doi.org/10.30595/dinamika.v14i2.14786
Lohgheswary, N., Salmaliza, S., Lun, A. W., Jedi, A., & Nopiah, Z. M. (2022). Evaluating reliability of final exam questions via rasch model. International Journal of Health Sciences, 1065–1074. https://doi.org/10.53730/ijhs.v6ns2.5064
Lüsse, M., Brockhage, F., Beeken, M., & Pietzner, V. (2022). Citizen science and its potential for science education. International Journal of Science Education, 44(7), 1120–1142. https://doi.org/10.1080/09500693.2022.2067365
Malapane, T. A., & Ndlovu, N. (2024). Assessing the reliability of Likert scale statements in an e-commerce quantitative study: A Cronbach alpha analysis using SPSS Statistics. In 2024 IEEE SIEDS Conference Proceedings (pp. 90–95). https://doi.org/10.1109/sieds61124.2024.10534753
Muaziyah, S. E. S., Hidayat, T., Sriyati, S., & Lutianasari, L. (2023). Citizen Science Project, Weather-it, in Science Education: The Scientific Attitudes of Secondary school Students. Techno, 12(1), 28–38. https://doi.org/10.33387/tjp.v12i1.5844
Rahman, Y. A., Rentina, L. H., & Dhini, U. R. (2023). Person fit analysis for assessing academic writing performance using Rasch model. Jurnal Pendidikan Glasser, 7(2), 301. https://doi.org/10.32529/glasser.v7i2.2571
Ramadhan, M. F., Siroj, R. A., & Afgani, M. W. (2024). Validitas and reliabilitas. Journal of Education, 6(2). https://doi.org/10.31004/joe.v6i2.4885
Reño, A. B. (2024). Rasch Analysis in Diagnosing Learning Gaps and Gauge Item Difficulty in Eighth-Grade Mathematics Assessments. Pakistan Journal of Life and Social Sciences, 22(2). https://doi.org/10.57239/pjlss-2024-22.2.001049
Shinta, D., & Rosana, D. (2017). Developing performance assessment instrument for measuring scientific attitudes. Jurnal Kependidikan, 1(1), 67–83. https://doi.org/10.21831/JK.V1I1.8421
Sumintono, B. (2014). Model Rasch untuk Penelitian Sosial Kuantitatif. Surabaya.
Sumintono, B., & Widhiarso, W. (2015). Aplikasi Pemodelan RASCH pada Asesmen Pendidikan. Cimahi : Trim Komunikata Publishing House.
Suryani, Y. E. (2018). Aplikasi Rasch model dalam mengevaluasi Intelligenz Structure Test (IST). Psikostudia: Jurnal Psikologi, 3(1), 73–100. https://doi.org/10.21580/PJPP.V3I1.2052
Ventura-León, J., & Peña-Calero, B. N. (2020). The world should not revolve around Cronbach’s alpha ≥ .70. Adicciones, 33(4), 369–372. https://doi.org/10.20882/ADICCIONES.1576
Wang, D., & Ziano, I. (2023). Give Me a Straight Answer: Response Ambiguity Diminishes Likability. Personality and Social Psychology Bulletin, 1461672231199161. https://doi.org/10.1177/01461672231199161
Wibisono, S. (2016). Aplikasi Model RASCH Untuk Validasi Instrumen Pengukuran Fundamentalisme Agama Bagi Responden Muslim. Jurnal Pengukuran Psikologi Dan Pendidikan Indonesia, 3(3), 729–748.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nur Rizki Silviani Suryadi, Laila Nurmegawati, Siti Eneng Sururiyatul Mu’aziyah, Anggie Siti Perdani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.








